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It is well known that free temperature oscillations cannot exist in nature. The theo- 
retical explanation of this fact is that the equation of heat conduction, unlike the equations 
of mechanics or electrodynamics, are not invariant under time reversal [i]. In the presence 
of periodic thermal perturbations (for example, repeated changes in the temperature head), 
however, forced temperature oscillations, which propagate in the form of heat waves, appear 
in the body [2-7]. 

In the last few years it has become clear that periodic mechanical, electric, and opti- 
cal processes as well as processes of a different nature, in addition to thermal actions, are 
often responsible for the appearance of thermal oscillations in the system. The temperature 
oscillations arising in this manner, in their turn, lead to pulsations of the shape and di- 
mensions of the body as well as its position in space, i.e., to mechanical vibrations. 

The combination of thermal oscillations and mechanical vibrations is customarily termed 
thermomechanical oscillations (TMO). Thermomechanical oscillations were studied in 1829 by 
A. Travelian [8], and later by M. Faraday, A. Tyndal, J. Rayleigh, and A. S. Popov [9]. K. 
F. Teodorchik later studied this problem [10-13]. Interest in TMO has now increased appre- 
ciably as a result of the possibilities for intensification of heat transfer with its help. 
Here we call attention primarily to the works of V. M. Galitseiskii et al. [14]. Analogous 
studies have been performed by others also [15-19]. 

While studying oscillations of current-carrying wires, D. I. Penner and his coworkers 
discovered the phenomenon of parametric excitation of TMO [20-25]. The theoretical and ex- 
perimental studies of [26-41] are devoted to the determination of the conditions for the ap- 
pearance of self-excited oscillations under these conditions (TMSO). Section I is devoted 
to the analysis of the basic results obtained in the studies enumerated. 

Intensive study of thermoacoustical oscillations (TAO) arising as a result of inter- 
coupled temperature oscillations and high-frequency pressure pulsations in a continuous me- 
dium also started in the 1950s. 

A series of works devoted to the most studied type of TAO - acoustic phenomena accom- 
panying boiling and interaction of these phenomena with heat transfer between the heater and 
the boiling liquid - is studied [46-69]. Studies of parametric amplification of pressure and 
temperature pulsations in a liquid medium and the establishment of intense thermoacoustic 
self-excited oscillations (TASO), accompanied by a sharp increase in the coefficient of heat 
transfer ~ and the amplitude of the acoustic pressure Pac, are of special interest [70-92]. 

In order to be able to use TAO in practical applications (for acoustic diagnostics of 
the operation of heat-exchange apparatus and for recording the onset of boiling of a liquid 
heat-transfer agent, increasing the intensity of heat transfer, and reducing scaling) and to 
eliminate some negative phenomena accompanying TAO, the reasons for the appearance of acous- 
tic noise and the characteristic features of this noise under different conditions of boil- 
ing as well as the circumstances encouraging and inhibiting the excitation of TASO must be 
determined [68]. 

Section II is devoted to the current status of the problem of thermoacoustic oscilla- 
tions. 

I. THERMOMECHANICAL OSCILLATIONS 

i. Appearance and Characteristic Features of Some Types of Temperature Oscillations. 
As a first example we shall study oscillations of the temperature accompanying transverse os- 
cillations of a thin heated cylinder. Since the rate of cooling of a heated body in a liquid 
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or gas increases as the relative velocity v increases, the coefficient of heat transfer a 
depends on v: a = f(v). The character of this dependence can be determined in general form 
taking into account the fact that in the case of heat transfer under conditions of transverse 
flow around a cylindrical heater (in the region of small Re numbers) the criterion Nu ~ Re z/2 
[3]. From here it follows directly that 

~(v) = a o -q- h VI~,  ( i )  
where ~0 is the coefficient of heat transfer of a stationary body; h is a constant that de- 
pends on the geometry and thermophysical properties of the body. 

King confirmed, based on experiments with thin cylinders moving uniformly in a straight 
line, the validity of (i) and he established that under these conditions 

h - - ' Y c - - ~  (1') 
(c and D are the specific heat capacity and diameter of the cylinder, ~ is the coefficient 
of thermal conductivity of the medium) [93]. 

When a body moves in a nonuniform manner heat exchange with the surrounding liquid is 
no longer stationary, but, as is easily verified, for sufficiently thin wires moving in a 
medium with insignificant acceleration the formula (i) can be used in the first approximation. 
Applying this formula to a thin heated cylinder, which undergoes low-frequency transverse os- 
cillations according to the harmonic law U = U0sinmt, and taking into account the fact that 
the modulus of the velocity J0J is a function of the frequency 2~, we find the dependence of 
the coefficient a on the time: 

a (t) = a0 + Aa0 (1 + cos 2~t), (2 )  

where  a= 0 d e n o t e s  t h e  a m p l i t u d e  o f  t h e  p u l s a t i o n s  o f  ~ ( t )  and i s  e q u a l  t o  

~ o  = h V iU]max = Vc-~ V~--U00D" ( 2 '  ) 

R e p r e s e n t i n g  t h e  t e m p e r a t u r e  T o f  t h e  o s c i l l a t i n g  c y l i n d e r  as  a sum o f  i t s  a v e r a g e  v a l u e  
and an o s c i l l a t i n g  t e r m  e ( t )  - T = T + 8 ( t )  - w i t h  a c c u r a c y  up t o  i n f i n i t e s i m a l s  o f  h i g h  

o r d e r  we o b t a i n  f o r  t h e  t e m p e r a t u r e  o s c i l l a t i o n s  

0 (t) = Oo (cos 2~ot -- q~). 

The amplitude of the oscillations is determined by the equality [i] 

(3) 

= Aa~ 0~ )2 AT Oo 

(here C and S are the heat capacity and the area of the lateral surface per unit length of 
the cylinder; To is the temperature of the medium; and, AT = T - To). 

The phase of the thermal oscillations 8(t) lags behind the phase of a(t): 

--- arctg 2~---C-C (5 )  
a0S 

For  p r a c t i c a l  a p p l i c a t i o n s  t h e  f o r m u l a s  (4 )  and (5 )  can  be s i m p l i f i e d  [ 3 1 ] ,  s i n c e  2C/S = 
1 /2pcD,  where  p i s  t h e  d e n s i t y .  

For  mos t  m e t a l s  and a l l o y s  b = 1 / 2 p c  = J / cm3"K.  At t h e  same t i m e ,  f o r  t h i n  c y l i n d e r s  
a 0 = X/2D [ 9 4 ] ,  so  t h a t  f o r  D > 1 mm and m > 1 r a d / s e c  t h e  i n e q u a l i t y  a0 << 2mC/S h o l d s .  
T a k i n g  i n t o  a c c o u n t  a l s o  ( 2 ' ) ,  we o b t a i n  f o r  t h e  a m p l i t u d e  o f  t h e  t h e r m a l  o s c i l l a t i o n s  

0o h'-/'-771Y/_o = /'  ~ - ~ A T ,  (4 ' ) 

where h' = ~/b has the dimensions of c -I/2. As regards the phase shift angle (5), in 
real systems thermal oscillations practically always lag behind the oscillations of ~(t) by 
a quarter period: 
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The expressions (3), (4'), and (5') were qualitatively confirmed in [30-34]. 

We shall now study an example of the generation of temperature oscillations by electric 
oscillations. Let an alternating current J(t) = J0sinwt flow along a long cylindrical con- 
ductor. Neglecting the skin effect, we have the following expression for the alternating 
heating Q(t) (per unit length of the conductor): 

Q (t) = d--~ sinZat = Qo (1 " c o s  2~ot), ( 6 )  
%el 

w h e r e  Xel  i s  t h e  e l e c t r i c  c o n d u c t i v i t y  o f  t h e  c o n d u c t o r  p e r  u n i t  l e n g t h  and Qo = J 0 2 / 2 X e l  i s  
the time-averaged heating. 

Analysis has shown [i, 34, 
conditions within the cylinder: 

37] that a nonstationary temperature field exists under these 

T (r, t) ---- T (r) + (D (r) cos [2cot - -  (p (r)]. (7) 

Here ~(r) is a function determined by a combination of Bessel functions of the first kind. 

For thin cylinders, for which the temperature is virtually independent of the radius, 
(7) assumes the form 

T (t) = ~ + 0o cos (2~t --  ~,  (8) 
i.e., the temperature of the wire heated by an alternating current with frequency ~ varies 
periodically with frequency 2m, and the amplitude of these "electrothermal" oscillations is 
determined by a formula analogous to (4): 

Oo = Qo (9) 
Fr(~S)2+(2~C) 2" 

The phase shift between 8(t) and Q(t) is expressed by the known relation (5). 

Taking into account the fact that under real conditions aS << 2mC, we simplify (9):: 

oo- 2cocQ~ =h" j~co (h"= 41 ~elC) " (9l) 

The condition (5), however, means in practice that the temperature oscillations 0(t) lag be- 
hind the current l(t) by an angle q0 ~- ~/2. 

The examples presented show that both mechanical and electrical oscillations generate 
temperature oscillations, and the amplitude of the latter, as follows from (4') and (9'), de- 
creases (although to a different degree) with the frequency of the primary oscillations. We 
note that in the case of "mechanothermal" oscillations 8 o ~ i/v~, while for electrothermal 
oscillations 80 does not depend on D. 

We shall now study the reverse process - excitation of mechanical oscillations of the 
system by temperature oscillations. 

2. Parametric Excitation of Thermomechanical Self-Excited Oscillations (TMSO). Neces- 
sary conditions. Any elastic body, driven out of the equilibrium state, undergoes free os- 
cillations with a characteristic frequency t00, determined by the parameters (usually tempera- 
ture dependent) of the system. For this reason, the appearance of thermal oscillations with 
frequency m in the body leads to modulation of the corresponding parameters with the same 
frequency. 

According to the theory of oscillations, if the condition 

2 
c o . - - c o  o ( n = l ,  2, 3 . . . .  ) ( 1 0 )  

t~ 

holds, parametric resonance (PR) arises in the system. Under these conditions, a correspond- 
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Fig. i Fig. 2 

Fig. !. Thermomechanical oscillations of a heated bifilar pen- 
dulum (a) and elastic wire (b). 

Fig. 2. Phase relations under conditions of TMO: a) mechani- 
cal oscillations of the wire U(t) and of the pendulum p(t); b) 
oscillations of the temperature 0 and modulation of the ten- 
sion o of the elastic wire; c) oscillations of the temperature 
8 and modulation of the length s of the pendulum. 

ing relation [95], which is usually established automatically [96], should also hold between 
the phases of the fundamental and modulating oscillations. 

The situation is more complicated with TMO, since the temperature oscillations themselves 
generate mechanical oscillations, so that their phases are strictly coupled. For this reason, 
in order for PR to arise in the system, aside from the condition (i0), a second necessary con- 
dition - a phase condition - must also be satisfied. 

We shall explain the essence of the phase condition for examples of an elastic wire and 
a mathematical pendulum heated with a current (Figs. 1 and 2). 

In the case of a taut wire (Fig. ib) undergoing transverse oscillations U = U0sin~et 
the characteristic frequency m0 is proportional to -~ (o is the tension and p is the density 
of the wire), while the coefficient of heat transfer ~(t) pulsates synchronously with the 
function 02(t), i.e., with the frequency 2~0. Correspondingly, the oscillations of the tem- 
perature 8(t) and modulation of the tension Ao(t), which are in antiphase, also oscillate 
with frequency 2m 0 (Figs. 2a and b). 

The current-carrying bifilar pendulum (see Fig. la) undergoes gravitational oscillations 
= ~0sin~0t, whose characteristic frequency ~0 = /g/s Here the square velocity 62(t) and 

the coefficient ~(t) varying in phase are characterized by the frequency 2~0, and hence the 
temperature 8(t) and the modulation of the length As oscillate with the same frequency 
(Fig. 2c). 

The rate of change of the oscillatory energy of the system accompanying modulations of 
the parameters o and ~ is determined by the expressions [37]: 

U s da d ~2 dl d (11) 
dt 2 dt dl 2 dt 

It follows from here that in order for PR to arise in the first case the modulations 
Ao(t) should lag behind U2(t), while in the second case As should lead ~2(t) (in both 
cases by v/2). Taking into account the phase relations between the oscillations Ao(t), As 
and e(t), we conclude that for modulations of the parameter on which the frequency of the 
fundamental oscillations ~0 depends explicitly, in order for PR to arise e(t) should lag in 
phase (approximately by an angle 7/2) behind ~(t); for modulations of the parameter on which 
the frequency ~0 depends inversely, the oscillations e(t) should lead ~(t) by the same angle. 
This is the necessary conditions for the phases. 

1 1 8 1  
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Fig. 3. Oscillograms of mechanical (top curve) and tempera- 
ture oscillations (bottom curve) of a wire heater in an under- 
heated liquid near the resonance frequencies. 

Fig. 4. Thermomechanical self-excited oscillations of a wire 
under conditions of pulsed heating: a) stationary oscilla- 
tions; b) beats. 

Fig. 5. Parametric amplification of oscillations: a) square 
modulation pulses (Meissner's function); b) dependence of the 
increment of excitation of oscillations 6 on the ratio of the 
frequencies ~ and ~0. 

We shall now take into account the fact that under real conditions e(t) always lags be- 
hind =(t). For this reason, elastic TMSO arise under transverse oscillations of the electric 
wire, but gravitational TMSO of the heated pendulum cannot be self-excited. This has been 
confirmed by diverse experiments performed in [34]. 

A new type of parametric amplification of TMO was discovered in [36], where the correla- 
tion between the changes in the temperature of an electrically conducting wire undergoing 
forced transverse oscillations and the frequency ~ of these mechanical oscillations was stud- 
ied. It turned out that for some so-called resonance frequencies ~, ~2, m3, ... a unique 
parametric amplification of the forced oscillations of the wire arises. At these frequencies 
the amplitude of the vibrations of the wire increases rapidly approximately by an order of 
magnitude, and the average temperature drops by 8-I0~ This is explained by the fact that 
near the indicated discrete frequencies the shift in the phases between the modulations of 
the tension [the latter are caused by periodic changes in the coefficient ~ and temperature 
pulsations 8(t) generated by them] and the oscillations of the wire reaches an optimal value 

= ~/2. As regards the condition on the frequencies, it holds automatically. The oscilla- 
tion obtained in [36] (Fig. 3) demonstrates that both necessary conditions for PR hold. 

Thus far we have discussed the excitation of thermomechanical self-excited oscillations 
by means of temperature oscillations, so to speak, "of mechanical origin." It is easy to 
verify that TMSO can also be excited by electrothermal oscillations. 
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Let an alternating current flow along a taut wire. If the frequency of the current 
is close to the characteristic frequency m 0 of transverse oscillations of the wire, then the 
periodic changes of the temperature 0(t) occurring in it have the frequency 2m 0. Modulations 
of the tension Ao(t) caused by the temperature oscillations occur with the same frequency. 
Therefore the first necessary condition for PR holds. Since the phases of the transverse os- 
cillations of the wire and the modulations of the tension are completely independent, the 
second condition holds automatically. Therefore TMSO should be excited in this system para- 
metrically. 

Such combined oscillations were obtained experimentally in [34], and an appreciable in- 
crease in the coefficient of heat transfer ~ was also recorded there. 

This phenomenon was further studied experimentally by V. G. Krymova [38], who discovered 
that the rate of parametric pumping of energy and the intensity of TMSO grow significantly 
when square-shaped current pulses are fed into the wire. In this case the PR occurs not only 
when the optimal condition ~ = 2~0 holds, but also in the case of the approximate equality 

2 
m--~ - - %  ( n = l ,  2, 3, ...). ( 10 ' )  

2n -- 1 

We note that (i0') differs from the usual condition (i0), necessary for parametric excitation 
of oscillations, in that the denominator of the coefficient of the characteristic frequency 
~0 is an odd number. As will be shown below, this fact is of fundamental significance. 

One other effect was discovered in the indicated experiments: for sufficiently low fre- 
quencies ~ of repetition of the current pulses (approximately in the interval from 1 to 7 
rad/sec, the characteristic frequency of the wire m0 = 15 rad/sec) TMSO were excited for any 
value of ~. In this case, however, the following peculiarities were observed: if the equal- 
ity (i0') holds strictly, stationary mechanical and temperature self-excited oscillations 
are established (their amplitude is all the more significant the smaller the number n) (Fig. 
4a); when, however, the relation (I0') holds approximately (~ = (2/2n - i)~0 + ~, ~ << ~0), 
the range of both the mechanical and thermal oscillations undergoes periodic changes, unique 
"beats" (Fig. 4b), with a period T = i/s. These effects will be explained below. 

3. Energetics of Parametric Excitation of TMSO. In the preceding section two necessary 
conditions for the appearance of TMSO - frequency and phase - were established. There arises 
the question: are these conditions sufficient? The answer to this question requires a dis- 
cussion of the energetics of the problem. 

As the analysis performed in [34] showed, over the period T the relative increment to 
the energy AW/W of the oscillating wire with temperature-induced harmonic modulations of its 
tension o is determined by the degree of modulation Ao 0 and the phase shift ~: 

( A_~_)z = rA%sin% (12) 

It is clear that Ao0 is proportional to 80, and the coefficient of proportionality is the 

thermal coefficient of elasticity ?=-~ 
L 

A% = @0. (13) 

S u b s t i t u t i n g  the  va lue  of 80 from ( 4 ' )  and (12) in to  (13) ,  we a r r i v e  a t  the  r e l a t i o n  
for the increment to the energy per unit time: 

--y- =h'v ]/ (14) 

This last equation determines the rate of parametric pumping of energy into TMO. We shall 
now take into account the fact that for any system there is a threshold value of (AW/W)mi n, 
below which parametric excitation is impossible. Conversely, the more AW/W exceeds the 
threshold value the more rapidly the energy of the system grows and the more intense the 
TMSO are. 
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The height of the "threshold" (AW/W)mi n for an oscillatory system depends on a number 
of factors: it increases with the "unbalance" of the frequencies E = m - 2m0, energy dissi- 
pation, and increase in the number n of PR in the condition (i0), and it also varies strongly 
with the type of modulating oscillations. 

Under all circumstances the excitation of self-excited oscillations in a real thermo- 
mechanical system requires that the following energy condition be satisfied in addition to 
the necessary conditions for the frequencies and phases: 

AW <AW) (15) 
W > T rnin" 

The energy threshold can be lowered, on the one hand, by improving the Q-factor of the 
oscillatory system. In the case of wire, to this end a small load with mass m can be sus- 
pended on it at the center. (The self-excited intense oscillations of such a current-heated 
wire were demonstrated in 1924 by N. I. Dobronravov and A. I. Shal'nikov. This effect was 
later explained by D. I. Penner [20]). 

On the other hand, the energy injected over a period of the oscillations must be in- 
creased for this purpose. Here the character of the modulating oscillations plays an impor- 
tant role. 

In a special study by the method of mathematical modeling, E. V. Borisov [38] established 
that for modulations conforming to Meissner's functions (Fig. 5a) the growth increment of 
the parametric oscillations is maximum, and in addition the repetition frequency of the "me- 
ander" should satisfy the condition (I0') and the corresponding phase relation. If, however, 
the modulation frequency is related with the frequency of the system by the equality m -~ 
(2/n)m 0 (n = 2, 4, 6, ...), then for low degrees of modulation (even in the absence of dis- 
sipative losses) the increment to the oscillatory energy of the system is insignificant (Fig. 
5b) (it should be noted that, as physical and mathematical experiments have shown, the char- 
acter of the dependence of the increment of the excitation on the number n of the PR becomes 
more complicated as the degree of modulation increases). In the case of harmonic modulations 
a significant inflow of energy is observed only for n = i, i.e., when m = 2m 0. 

Based on these data we can understand the results of experiments with the wire heated 
with a pulsed current: in this case for any m there exist numbers 2n - i and a relatively 
small e << m0 such that 

2 
(0 ~- - - C O 0 - ~  8. 2r~-- 1 

It remained to explain why beats appear in the self-excited oscillations when the equal- 
ity (i0') does not hold strictly, i.e., when ~ = 2m 0 + ~. Because of the difference in the 
frequencies, the phase shift between the modulations and the fundamental oscillations in- 
creases monotonically, and the factor sin~ appearing in (14) varies with the period �9 = i/e. 
Therefore the energy flowing into the system varies with the same period, which is what leads 
to the beats in the self-excited oscillations. When, however, e + 0 and the period of the 
beats T + ~, stationary TMSO are established in the wire (Fig. 4a). 

4. TMSO in Systems with Several Degrees of Freedom. In the case of a system undergoing 
several mechanical oscillations the TMO are much more complicated, and a number of features, 
for example, the dependence of the coefficient of heat transfer ~ on the type of oscillatory 
process, appear. 

As an example we shall study the foregoing horizontal wire with a small load with mass 
m (see Fig. ib). As a result of the fact that the coefficient of damping of free oscilla- 
tions of the body in an air medium ~m -I, the Q-factor of the wire with the load is apprecia- 
bly higher and the TMSO excited in it (under otherwise equal conditions) are much stronger 
than without the load. However, the fact that such an oscillatory system has several degrees 
of freedom is more important: elastic oscillations in the vertical direction and gravita- 
tional oscillations along a horizontal arc lying in a transverse plane (in this case the small 
mass is similar to a mathematical pendulum whose length equals the dip of the wire s can ap- 
pear in it. It should also be kept in mind that under the action of the pendulum motions of 
the load the wire clamped at the ends undergoes forced torsional oscillations. 
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For small dips ~ << L the characteristic frequencies of elastic and gravitational oscil- 
lations of the indicated system are practically equal, i.e., 

~grav - ~tor ~ ~0ela ~ 7/g// .  (16) 

The e q u a l i t y  ~grav = a t o r  i s  obv ious ,  s i n c e  ~ t o r  of  the  f o r c e d  o s c i l l a t i o n s  equa l s  ~grav of  
the  p e r t u r b i n g  f o r c e ;  t he  approx imate  e q u a l i t y  of  ~grav and ~e la  i s  p r o v e d i n  [34] .  

How a r e  TMSO e x c i t e d  and modulated in such a system? 

For smal l  random d i s p l a c e m e n t s  of  the  hea t ed  wi re  from the  e q u i l i b r i u m  p o s i t i o n ,  t he  
wire starts to oscillate weakly. In the process, small temperature oscillations at the dou- 
bled frequency 2fgT~-, giving rise to modulations of the tension, which satisfy the necessary 
frequency and phase conditions for parametric excitation of elastic oscillations of the wire, 
accompanied by oscillations of the temperature 8(t) arise in it. In the presence of these 
oscillations (with the doubled frequency 2mel a) the length of the pendulum ~ is modulated, 
i.e., the frequency condition is satisfied. Since the phases of the elastic and gravitational 
oscillations are independent of one another, elastic oscillations start to amplify parametri- 
cally the gravitational oscillations of the wire. In the process, based on the law of con- 
servation of energy, the intensity of the first oscillations drops correspondingly. The un- 
usual pumping of energy from vertical oscillations over into horizontal oscillations occurs. 

Thus, at first elastic TMSO, which gradually transform into gravitational TMSO, exist 
in the system. However, the process does not stop here: the pendulum oscillations of the 
load generate torsional oscillations of the wire, and in the process the tension is modulated 
at the doubled frequency. For this reason, after some time reverse pumping of energy from 
horizontal over to vertical oscillations of the wire starts. The experiments of [34] show 
that such transitions can continue indefinitely. The character of the temperature oscilla- 
tions becomes more complicated in the process: though on the average their intensity is con- 
served, the form of the oscillations becomes distorted. 

This is apparently associated with the different conditions of cooling of the heated 
wire as it moves in the horizontal and vertical planes (in the latter case the wire is sur- 
rounded by a rising flow of heated air). On the whole the role of temperature oscillations 
reduces to compensating the energy losses owing to the current source. As regards ~, the 
measurements indicate that it increases by a factor of 2-4 when TMSO are established. It 
slowly oscillates during the periods when the energy of the oscillations is pumped from one 
degree of freedom to another. 

The experiments show that when the electric wire is submerged in a cold liquid the inten- 
sity of the parametrically excited TMSO increases sharply (compared with an air medium), and 
the wire radiates a strong acoustic signal; the value of ~ in a cold liquid is approximately 
two times higher than in the gaseous medium with the same temperature [39]. 

We note that in some works [20, 21] it was suggested that parametric excitation of TMSO 
in linear electrical conductors was responsible for the appearance of the so-called "dancing 
of the wires." In [34], based on experimental and theoretical study of this hypothesis, it 
was concluded that under real conditions parametric buildup of oscillations of current-carry- 
ing wires can lead to very strong mechanical oscillations of stretched wires ("galloping"), 
when their diameter does not exceed 1-2 mm. Since the wires employed in electric power en- 
gineering have diameters of at least an order of magnitude larger, it can be assumed that 
TMO do not play a decisive role in the appearance of "dancing." Nonetheless the fact that 
they could affect the development of the "galloping" process has not been excluded. 

II. THERMOACOUSTIC OSCILLATIONS 

In this section we shall study thermoacoustic oscillations (TAO) accompanying boiling 
in a large volume (Sec. I) and accompanying flow of boiling liquid in channels (Sec. 2). The 
mechanism for excitation of thermoacoustic self-excited oscillations (TASO) will be studied 
in Sec. 3. 

i. Mechanism for the Production of Acoustic Noise Accompanying Boiling. Over the last 
40 years a series of experimental studies of the character of the acoustic noise accompanying 
the process of boiling has been performed. Nonetheless, there is still no general agreement 
regarding the mechanism responsible for the generation of an acoustic field. One of us re- 
cently suggested the general concept of the formation of acoustic waves accompanying heating 
of a liquid up to certain states - "preboiling," underheated and saturated boiling [43]. 
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Fig. 6. Qualitative dependences of the acoustic pressure 
pulses from separate bubbles of steam under conditions of 
underheated (a) and saturated (b) boiling and in the case of 
a sequence of periodically forming bubbles at an active cen- 
ter of underheated boiling (c). 

Fig. 7. Qualitative picture of the spectra of acoustic 

f 
sV) 

pulses accompanying underheated (a) and saturated (b) boiling. 

It is now generally acknowledged that noise accompanying heating of a liquid up to the 
boiling point and subsequent developed boiling is generated by bubbles whose volume V changes. 
Indeed, according to hydrodynamics [74], the simplest emitters of sound are bodies with vari- 
able volume embedded in a continuous medium. At distances r >> k (% is the wavelength of the 
sound wave) the variable part of the pressure Pac(t) is given by the relation 

Pac- p t?(t), (17) 
4~r 

where p is the density of the medium. Applying this formula to spherical bubbles (V = 4zRs/3), 
we transform it into the form 

p~ _ e R (2R ~ + RR), ( i 8 )  
r 

where R is the radius of the bubble. It follows directly from (18) that an appreciable acous- 
tic pulse is usually initiated by quite large bubbles, though in [67] it was proposed that 
under conditions of saturated boiling sound is emitted by vapor bubbles at the earliest "ex- 
plosive" stage of growth. 

In addition, since vapor bubbles cannot form in underheated liquid, but a melodic sound, 
so-called "singing," can be heard in the preboiling state, it must be assumed that in this 
regime the sound sources are microscopic bubbles of gas which are always present in real liq- 
uids. As shown by Minnaert [42], such bubbles can undergo free spherical oscillations with 
the characteristic circular frequency 

1 1 / 3 7 P 0  (19) 
R I t '  p 

(he r e  P0 i s  t he  s t a t i c  p r e s s u r e ,  whi le  y equals  the  r a t i o  of  t he  hea t  c a p a c i t i e s  Cp/CV). 

For a i r  bubbles in water  a t  normal p r e s s u r e  the  f r equency  of  the  sound em i t t ed  by the  
bubble,  as i s  e a s i l y  v e r i f i e d ,  equals  

f = 0,66 
D 

where D is the diameter of the bubble in cm. 

kHz, (19')  
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Since water cannot contain very large gas bubbles, the audible sounds are emitted by 
bubbles whose sizes range approximately from D l = 1/3 mm to D 2 = 1/3 cm. Correspondingly, 
the acoustic frequencies range from 2 up to 20 kHz. 

The chief reason for the excitation of such a spherical oscillator is evaporation of 
liquid in it as the liquid is heated: the destruction of the mechanical equilibrium of the 
bubble generates unusual self-excited oscillations of the vapor-gas bubble. Thus, raising 
the temperature of the liquid excites many sound emitters - small gas bubbles, each of which 
transmits a harmonic acoustic wave; their frequencies are of the order of several kHz. Ul- 
timately, the characteristic singing of a "chorus" of gas bubbles, indicating the approach 
of boiling of the liquid, is audible. 

When the temperature of the heater is further raised, the stage of underheated boiling 
appears. By this time the gas bubbles have been completely removed from the liquid and bub- 
bles of steam start to form in the layer of liquid at the wall. Such bubbles at first grow, 
but, once they reach some size Rm, they enter the region of cold liquid and become degraded. 
This entire cycle is repeated with a period ~, inversely proportional to the magnitude of 
underheating ATun h. According to (19) this means that the indicated bubbles of steam emit 
acoustic pulses. The integrated sound field, generated by many "pulsating" bubbles formed 
in active centers, is the noise of underheated boiling [68]. 

The general form of the spectrum of this noise can be determined by analyzing the formula 
(19): for small R the pulse is positive (Pac> 0), while conversely, for R = Rm, where R = 
0, the pulse is negative (rarefaction) Pac < 0. Therefore over the lifetime ~ of a bubble 
the sign of the pressure in a pulse must change twice: compensation-rarefaction-compression 
(Fig. 6a). This character of the pulse has been confirmed in experiments [52]. 

To find the form of the acoustic spectrum of such a pulse Pac(t) must be represented in 
the form of a Fourier integral. To obtain a qualitative solution, however, we shall employ 
the general theory of spectra [97]: the spectrum of an aperiodic, sign-alternating pulse is 
continuous, and its maximum falls on a frequency fm that is the inverse of the period of os- 
cillations of the pressure in the pulse (as is clear from Fig. 6a, this period equals approxi- 
mately 2/3~). The maximum at the center is weak, because the number of sign changes in the 
pulse is small. 

Since not one, but a series of approximately repeating bubbles forms in active centers, 
according to [97] the spectrum becomes discrete, but in the process the segments of the line 
spectrum fall completely on the curve of the continuous spectrum of a single pulse. In prac- 
tice, because of the inexact periodicity in the appearance of the next bubble, the noise 
spectrum accompanying underheated boiling is usually continuous and has a wide principal max- 
imum and narrow, equally spaced, additional maxima. The presence of many centers increases 
the integrated intensity of the noise, but does not change the character of the spectrum. 

As the temperature of the heater is further increased, the regime of saturated boiling, 
in which the steam bubbles arising grow monotonically up to macroscopic sizes, starts. Apply- 
ing (19) in this case, we conclude that at first, for small R, the pressure is positive (Pac > 
0) and increases. In what follows, when the stage of "asymptotic" growth starts and R ~ 
t I/2, the bubble continues to emit a compression pulse, whose magnitude drops with time as 
t -I/2. Ultimately, the bubbles emit pulses of the form shown in Fig. 6b. The difference in 
the form of the pulses Pac(t) also affects their spectra: in the case of a pulse with a con- 
stant sign the spectrum has a maximum at the frequency fm = 0. Figure 7 shows spectra of the 
pressure pulses emitted by isolated bubbles. 

We shall make one other remark: under conditions of monotonic heating of a liquid up 
to the onset of saturation the degree of its underheating decreases, and the lifetime �9 of 
the bubbles increases. For this reason the frequency fm of the maximum of the acoustic spec- 
trum shifts monotonically to f = 0. Therefore, the character of the noise under conditions 
of underheated boiling changes continuously, until saturated boiling appears and the "tonal" 
quality of the noise becomes stationary. This conclusion agrees with the experiments of [52]. 

Thus, the boiling regime of a liquid can be judged from the character of the acoustic 
noise. The following experimental fact can also be understood: the loudness of the noise 
associated with underheated boiling is much greater than in the case of saturated boiling. 
The main reason for this lies in the fact that most of the acoustic energy accompanying satu- 
rated boiling falls into the inaudible, infrasonic region. 
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In conclusion, we note that the foregoing picture of sound generation is predicated on 
the fact that the liquid occupies an unbounded volume. Under real conditions, because of the 
finiteness of the dimensions of the vessel containing the liquid and because the vessel has 
characteristic frequencies, additional resonant phenomena are superposed on the indicated 
picture. It is quite difficult to take them into account in general; this can be done only 
in the simplest cases of a vessel with a regular geometric shape, in particular, accompanying 
boiling in a narrow cylindrical pipe. 

2. Thermoacoustic Oscillations Accompanying Boiling of a Liquid in Pipes. Different 
types of channels (pipes), along which liquid heat transfer agents flow, are employed in power 
plants. Since the liquid moving in the pipe is an elastic medium, in accordance with the as- 
sumptions of hydrodynamics standing waves with definite discrete frequencies can arise in it 
[98]. 

If, in the process, the liquid boils, then vapor bubbles appear at active centers on the 
inner walls of the pipe, and because the volume of a bubble changes nonuniformly the bubbles 
are elementary sources of sound. Ultimately, a complicated nonstationary thermoacoustic field 
forms in the pipe. 

This field and its effect on heat exchange have been studied by many authors [49, 50, 
70-73, 75-89]. The most detailed study of TAO accompanying boiling in pipes was conducted in 
[68, 90, 91]. In these works Pac was determined at different points in a pipe and the dynam- 
ics of vapor bubbles were simultaneously recorded optically (with the help of F~U); a system 
of thermocouples enabled finding the temperature distribution in the flow of boiling liquid. 

All this enabled establishing the empirical dependences of the acoustic pressure Pac and 
its spectrum on the heat load q, the flow velocity v, the static pressure P0 in the system, 
as well as the relation between the changes in the volume of a bubble and the phase of the 
acoustic pulse emitted by it, 

To clarify the nature of TAO in a cylindrical pipe with an underheated-boiling liquid, 
we shall study in greater detail the typical dependence of Pac on the heat load q (Fig. 8a) 
[92]. 

Analysis of this curve reveals the most significant features of the acoustic noise of 
the boiling flow in an acoustically wide pipe (when its diameter D is of the order of the 
wavelengths of the sound waves I emitted by the vapor bubbles). 

The curve Pac(q) indicates that the entire interval of bubble underheated boiling is 
best divided into four regions. 

In region 1 - small heat loads (q < ql) - the acoustic noise is virtually "white," i.e., 
the spectrum is continuous and uniform with hardly noticeable peaks at the characteristic 
frequency fB of the vapor-liquid column in the channel (Fig. 8b). The acoustic pressure Pac 
grow s linearly with q. There is no standing wave of elastic pressures of the medium in the 
channel. 

In the region 2 (ql < q < q2), as the heat Load q increases, the acoustic pressure Pac 
rapidly increases and reaches a maximum at some q, and then drops off smoothly. The frequency 
spectrum remains continuous, but is characterized by a wide maximum at a definite_frequency 
fl (Fig. 8c). The sharpness of this maximum depends on q and is highest for q = q. The pres- 
sure in the channel, as the measurements showed, indicates the existence of a standing wave, 
whose amplitude is maximum when q = q, in this region. 
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Region 3 (q2 < q < q3) is similar to the first region; here there is also no standing 
wave, and the spectrum of the acoustic signal is identical to the spectrum of region 1 (Fig. 
8b). The only difference between this region and the first one is that the acoustic accom- 
paniment is louder. 

Region 4 (q > q3) is characterized by a fast increase in the acoustic pressure Pac, while 
the spectrum is distinguished by the existence (at q = q0) of a sharp maximum at a definite 
frequency f2 = 1/2 fl (Fig. 8d). The noise associated with boiling transforms into an in- 
tense "whistle." As the load q is further increased, maxima at frequencies of subsequent 
harmonics start to appear in the noise spectrum (Fig. 8e). As q approaches the criticalload 

qcr the whistle vanishes, and the loudness of the sound drops rapidly. 

The physical nature of such complicated thermoacoustic phenomena in pipes with a locally 
boiling liquid was qualitatively determined in [37, 63, 92]. 

We note first of all that in the case under study we have a complicated oscillatory sys- 
tem consisting of two subsystems: A) a collection of gas bubbles alternately increasing in 
size and collapsing and B) an elastic column of liquid that can undergo hydrodynamic oscilla- 
tions with large amplitude. Both subsystems are intercoupled, and the character of their 
coupling, determining the overall thermoacoustic picture, depends on the thermophysical con- 
ditions, primarily, q. The subsystem A consists of a collection of N (equal to the number of 
boiling centers) elementary acoustic emitters, transmitting acoustic pulses with amplitude 
~Rm3/T 2 (where R m is the maximum radius of a bubble and T is its lifetime) [64]. It is well 
known that under conditions of underheated boiling the average values of R m and T and hence 
the amplitude of the pulses also are virtually independent of the heat flux q. Therefore in 
the A subsystem only the number of emitters, which is proportional to q2, depends directly on 
q [99]. 

The oscillations of the B subsystem consist of standing waves of the pressure, whose 
frequencies are multiples of the fundamental frequency fB, which is determined by the length 
of the channel L and the sound speed c: 

:B = c ( 2 0 )  

2L 

We shall now take into account the fact that in a two-phase medium the sound speed c de- 
pends on the vapor content X (in reality, as V. E. Nakoryakov et al. showed [61], the sound 
speed in a two-phase flow is a complicated function of the parameters of the system, but for 
our purposes we can confine our attention to simplified thermodynamic models) (Fig. 9a), while 
the latter depends on the load q, so that fB is a function of q (Fig. 9b). The amplitude of 
the standing waves is determined by the total energy fed into the two-phase column by acoustic 
pulses. 

We call attention to the following fact. Vapor bubbles can "build up" a standing wave 
in a channel in two fundamentally different ways: first, when the bubbles send compression 
pulses in phase with the elastic longitudinal oscillations of the two-phase column, i.e., 
directly, and second, indirectly, when the total volume of the vapor bubbles, i.e., the va- 
por content X, periodically changes with the frequency fB (or a multiple of it). In the pro- 
cess, the oscillatory parameter of the B subsystem - the speed c of propagation of elastic 
waves in the channel - is modulated. When the corresponding phase condition is satisfied, 
TASO are excited parametrically in the pipe. 

We now return to the analysis of the dependence Pac(q) presented in Fig. 8. The usual 
noise of underheated boiling, consisting of the superposition of acoustic pulses, generated 
in a disordered fashion by vapor bubbles forming and collapsing in active centers, is recorded 
in region i. In this case the B subsystem plays a negligible role in the general generation 
of sound: the chaotically following compression and rarefaction pulses cannot excite a stand- 
ing wave in the channel. On the other hand, since the bubbles emit pulses in a disordered 
fashion, the integrated sound intensity J = Pac 2 grows in direct proportion to the number N 
of these elementary emitters. But, as noted above, N ~ q2, so that Pac is proportional to q, 
as one can see from Fig. 8a. 

We shall now study the region 2, where the values of the heat loads q fall into a neigh- 
borhood of q where the frequency of the elastic oscillations of the vapor-liquid column in 
the pipe fB equals the repetition frequency of the compression pulses (Pac + > 0). We shall 
explain this in greater detail. 
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Each bubble emits an acoustic pulse, shown in Fig. 6a. After the bubble collapses, a 
period of quiet starts, the duration ~' of which decreases as the temperature head AT, de- 
pending on q, increases. Experiments show that this situation continues up to a definite 
value of AT*, at which the quiet time T' of the center remains practically unchanged and 
falls into the range (1/3-1/2) T. For this reason, for sufficiently large q the series of 
vapor bubbles generated and collapsing at the same active center generates in the continuous 
medium pressure pulsations, whose qualitative character is shown in Fig. 6e. 

As follows from this figure, each center of boiling emits unsymmetric pressure oscilla- 
tions, and the experiments show that the repetition frequency of compression fA + ~ 1/3 �9 is 
approximately twice the repetition frequency of rarefaction fA-: fA + = 2fA-" 

As regards the frequency fB of elastic oscillations of the two-phase column, according 
to (20) it depends only on the sound speed c(X) determined by the vapor content. For this 
reason, as the heat load q increases, the frequency fB drops, so that for some value q the 
frequency fB equals fA +. In this case the partial frequencies of the A and B subsystems are 
equal to one another. According to the theory of oscillations, the coupling in the system 
(A + B) increases sharply and the (usual) resonance of coupled oscillatory subsystems appears. 

In our case this means that, first of all, elastic oscillations of the B subsystem syn- 
chronize the moments at which bubbles appear and collapse in different active centers; second, 
during the time intervals when the emitters of A subsystem generate positive pressure pulses 
(Pac + > 0) compression occurs in the two-phase column B: In other words, the bubbles exert 
a force on the continuous medium, building up the standing wave during its compression half- 
period. It is significant that the oscillations of the A and B subsystems are in phase. 

When the heat load is further increased q > q2, the frequency fB decreases, and an "un- 
balance" between the partial subsystems A and B appears, the resonance vanishes, and we fall 
into the region 3, where the noise in the channel is once again created by only the A subsys- 
tem, i.e., bubbles are formed and degraded chaotically. But now the numbers of centers N 
are larger than in region i, so that the noise is correspondingly louder. Characteristical- 
ly, the experimental points Pac(q) continue to fall along the same straight line as in re- 
gion I. We now turn to the analysis of the more interesting region 4. 

3. Parametric Excitation of Thermoacoustic Self-Excited Oscillations. When the heat 
load is increased and approaches the value q0, while the vapor content X correspondingly ap- 
proaches X0, the frequency fB decreases and reaches a value close to fA, i.e., it approaches 
the repetition frequency of the rarefaction pulses generated by the bubbles: fB ~ fA- (Fig. 
6c). 

Therefore the partial frequencies of the A and B subsystems in region 4 are equal, so 
that resonance once again appears in the system, but this time the resonance is parametric. 
The standing wave arising here synchronizes the creation and degradation of vapor bubbles, 
energy is transferred from A to B during the compression half-period of the standing wave, 
but in the process the bubbles, as they collapse, emit a rarefaction pulse. Therefore, in 
this case, the pressure oscillations of the A and B subsystems are in antiphase, but the vapor 
content decreases and the oscillatory parameter c and the frequency fB increase. 

It can be stated that in region 4 the chief oscillations are oscillations of the pressure in 
the B subsystem, while pulsations of the bubbles modulate these oscillations. Since the frequencies 
of the main and modulating oscillations are equal to one another, when the phase condition 
is satisfied parametric resonance should appear in the complicated system, as a result of 
which TASO are established. Here the vapor bubbles play the role of a valve: as they col- 
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lapse, they transfer to the two-phase column the energy accumulated by them as a result of 
being heated by the heater. 

We note the following important fact. As already mentioned above, if under the condi- 
tion (i0) the coefficient n = 2 (which is true in the case under study), the pumping of energy 
is very weak. But, because of the fact that in a neighborhood of the point X 0 the modulations 
of the parameter c are unsymmetric - c grows rapidly as X decreases, while when X increases 
c does not change (Fig. 9a) - strong parametric pumping of energy into the B subsystem occurs 
and the range of the oscillations of the standing wave grows rapidly. 

It remains to check whether or not the phase condition holds in this case. It is shown 
in [37] that when the vapor content X and the sound speed c in the two-phase medium change, 
the oscillatory energy W of an isolated column varies according to the law 

dW ~z dE" 
dt 2 dt 

(21)  

where n is the relative compression of the medium, E is the modulus of compression, and c = 

It follows from (21) that for parametric increase of the energy W the modulus E and the 
sound speed c must lag in phase (in the best case by the angle �9 = ~/2) behind the pressure- 
determined compression ~. On the other hand, the corresponding changes in the rate of vapor- 
ization or condensation give rise to changes in the pressure: 

dX 
- -  f~Pac, ( 21 '  ) 

dt 

where  ~ i s  a c o n s t a n t  t h a t  depends  on t h e  p r o p e r t i e s  o f  t h e  l i q u i d .  

But  s i n c e  in  t h e  i n t e r v a l  f rom 0 t o  X 0 t h e  sound s p e e d  c and h e n c e  t h e  c o m p r e s s i o n  modu- 
l u s  E o f  t h e  v a p o r - l i q u i d  medium d e c r e a s e  in  p r o p o r t i o n  t o  t h e  v a p o r  c o n t e n t  X, t h e  r e l a t i o n  
( 2 1 ' )  can  be t r a n s f o r m e d ,  t o  a f i r s t  a p p r o x i m a t i o n ,  i n t o  t h e  fo rm 

dE [~'Pae, ( 21" ) 
dt 

indicating that the periodic changes in the modulus E(t) lag in phase behind the acoustic 
pressure Pac(t) by an angle ~/2. At the same time the relative compression ~ of the medium 
varies in phase, according to Hooke's law, with the oscillations of the pressure in the pipe: 

(0 ~ Pao Ct). 

From here we conclude that oscillations of E(t) lag in phase by an angle ~/2 behind oscilla- 
tions of the compression N(t), i.e., there is an optimal phase relation of the parametric 
pumping of energy. 

Thus, in a boiling flow in region 4 elastic oscillations of the two-phase medium (B sub- 
system) are the main source of sound, and these oscillations control (feedback) the operation 
of the "valve" (A subsystem), periodically making it possible for energy to flow in from the 
heater. This is a typical self-excited process. 

It is obvious that when the heat load is further increased significantly q > q0 the va- 
por content X will shift appreciably to the right of the point X0 (Fig. 9a), the conditions 
for parametric amplification of oscillations of the B subsystem are degraded, the standing 
wave is damped, and the intensity of the acoustic signal drops off rapidly. This usually 
occurs shortly before the onset of boiling. 

In conclusion it should be noted that further study of the thermomechanical and thermo- 
acoustic oscillations will enhance their practical applications in power generation and other 
areas of modern technology. 
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